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CONCERNING CERTAIN LINEAR TRANSFORMATION
APPARATUS OF CRYPTOGRAPHY!

By LESTER S. HILL, Hunter College
1. Introductory Note

Of especial interest in systematic cryptography is the linear transformation:

Y1 = au¥®1 + @163 + - - - + ay¥r + ay,
Yo = @1%1 + Q%2 + - - - + Qar%y + ag,

(1)

Vs = an®1+ apke + - - -+ ayxr + a0y,

in which f is any positive integer, and the variables x;, y;, as well as the coeffi-
cients ai; and a; are elements of an arbitrary field, finite or infinite. But the
linear apparatus which may be profitably employed is much more extensive.
To meet the demands of effective cipher construction, we must often operate
in sets which do not possess full field character. The necessary operational sets
are really special linear associative and commutative algebras. In the present
paper, we shall call these sets scales. For our purposes, the transformation T
must be made available in any scale.

Moreover, it is highly desirable to extend the transformation T in the
sense of permitting the x;, ¥, aij, @: to be square matrices of arbitrary order in
an arbitrary scale. This enables us to convert a sequence %1, %s, * - -, %7 of f
matrices into another sequence i, ¥z, ¢ + +, ¥y of f matrices. The specification
of conditions under which a unique inverse transformation exists will naturally
be important.

When the underlying scale is of the type of most immediate cryptographic
significance, namely the type S(n#) discussed in Section 3, the linear transfor-
mations T" may be effected with extraordinary speed and accuracy by means
of a mechanical device, no calculations of any sort being required. To avoid
the expense of preparing machines of different structures, one for encipherment
and the other for decipherment, we employ <nvolutory transformations of type
T(that is to say, transformations of period 2).

It is hoped that these notes will direct attention to a fascinating, although
sadly neglected, domain of applied algebra.

2. Scales

The word ring? has been quite generally adopted to describe any finite or
infinite set R, over which operations of so-called “addition” and “multiplica-

1 4 Note by the Editor: This paper was presented under a different title to the American Mathe-
mathical Society at Boulder, Colorado in August, 1929. It is the second article by Professor Hill
on the subject of Cryptography to be published in this Monthly. The first one was Cryptography
in an algebraic alphabet, in vol. 36 (1929), pp. 306-312.

2 See Hasse, Hohere Algebra, Part 1, pp. 7-9.
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tion” are in any way uniquely specified, provided that: (1) R contains at least
two different elements; (2) multiplication is distributive with respect to ad-
dition, and each of these two operations is associative and commutative; and
(3) if a and B denote elements of R, not necessarily different, then R contains
exactly one element v such that a+vy=3.3

It is readily shown that any ring R contains exactly one zero element, and
we shall denote this element by 0. The zero element has the properties, the
first of which is definitional and pertains only to this element, that a+0=q«
and «-0=0, where a denotes any element of R. Concerning the second of these
properties, we note that there is an infinity of rings in which every product
vanishes (is equal to the zero element). According to the definition given below,
such rings are clearly not scales.

Each element « of any ring determines uniquely an element & such that
a+6=0, and 6 is called the “negative” of . We write 6 = —«, noting the
obvious implication that &« =—68. The element v of postulate (3) above is
denoted by f—a; and we observe that —a=8+4+(—a).

Let «, B, v denote elements, not necessarily different, of a ring R. We
easily see that a(—B)=(—a)f=—aB, (—a)(—B) =aB, a(8—v)=aB—avy; and
also that each of the equations o =8, a—f3 =0, implies the other.

An element « of a ring R is a “divisor of zero” if R contains an element
different from zero (8370) such that «3=0. The zero element of a ring is always
a divisor of zero.

By reason of the commutativity of multiplication, a ring R can not contain
more than one element e such that ea =« for every element . of R. If one such
element e is present, it is called the unit element of R, and may be conveniently
denoted by 1.

In all that follows, we shall operate exclusively in those rings which we
distinguish as scales. Hence we emphasize the definition: A scale is a ring which
contains a unit element. If a ring R is a scale, we shall ordinarily denote it by
the letter .S. '

Let o denote any element of a scale S. It is readily established that S can
not contain more than one element 8 such that e8=1. If one such element 8
is present in the scale, we call it the “reciprocal” of «, writing 8=1/«, and
noting the implication that «=1/8. An element of a scale will be classed as
regular or singular according as it has, or has not, a reciprocal.

In any scale, the unit and zero elements are respectively regular and
singular; and the product of two elements, not necessarily different, is regular
when and only when both elements are regular. The negative and the recipro-
cal of a regular element are regular. A4 field is a scale in which the zero is the only
singular element.

# When no misunderstanding can arise, we shall employ without comment the familiar ter-
minology and notations of elementary algebra. Thus, for instance, we shall say that addition and
multiplication of the elements « and 8 of a ring yield respectively the “sum” a8 and the “pro-
duct” af.
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A regular element of a scale is never a divisor of zero. In some scales, every
singular element is a divisor of zero; in other scales, this is not the case.

If « is any element, and 8 any regular element, of a scale .S, then .S contains
exactly one element, v, such that By =a. We write ¥y =a/f, observing that, in
fact, a/B=a(1/B). 4

Exponential notations are easily introduced. If « is any element of a scale
S, the meaning of the symbol &, for positive integral #, requires no comment.
When # is a negative integer or zero, this symbol is defined only for the case
in which « is a regular element of S, and the specifications in that case are:
=1 (the unit element of .S), a»=(1/a)~™".

It should be noted that every field is a scale, and that every scale is a ring. The
following two sections will furnish examples of scales which are fields, and of
scales which are not fields. There exist an infinity of rings (finite rings as well
as infinite rings) which are not scales; but the present paper completely dis-
regards such rings.

3. Simple Examples of Scales .

It is evident that the fields of rational, real, and ordinary complex numbers
furnish three examples of scales. A subscale of each of these is found in the set
of all positive and negative integers and zero. This infinite subscale contains
only two regular elements, namely +1, and only one divisor of zero, namely 0.

Of exceptional practical interest in cryptography are the finite modular
scales which we here designate as of type S(z). For the integer n=2, let S(n)
denote any set of # elements associated, one-to-one, with the # integers 0, 1,
2, -+, n—1. If the elements a, B of S(n) are associated with the integers

a, b, we define:
at+fB=v af =3

where v and § are the elements of S(n) associated respectively with the re-
mainders obtained upon dividing, by #, the ordinary sum a+b, and the ordinary
product ab, of integers.

With operations thus defined, modulo 7, we see that S(») is a finite scale.
Its regular elements are those associated with integers prime to #. When # is
prime, S(z) is a field.

It will be convenient to treat, as the elements of S(#), the » integers 0, 1,
2, - - -, n—1 themselves, regarded as mere marks or symbols.

For cipher construction, perhaps the most useful scales of the type S(#) are
those which correspond to # =23, 25, 26, 27, 36, 100, 101. The first and the last
of these seven are, of course, fields.

We shall draw our illustrative material from S(26). We tabulate here, for
later reference, the regular elements of this scale, together with their reciprocals:

S(26)

Element: 1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25
Reciprocal: 1, 9, 21, 15, 3, 19, 7, 23, 11, 5, 17, 25



138 LINEAR TRANSFORMATION APPARATUS OF CRYPTOGRAPHY [March,

The negative of the reciprocal of an element in any scale is the reciprocal
of the negative. Thus we have here:

—21=1/(-5)=1/21=5; —17=1/(—23)=1/3=9; etc.
Operations in S(26) may be further illustrated as follows:
3+11=14; 17+12=3; 9+17=0, whence —9=17 and —17=9; 3(7)=21,
whence 21/3=7 and* 21/7=3; 7(15)=1, whence 1/7=15 and 1/15=7; etc.
The negative of any element is obvious: —0=0, —1=25, —2=24, —3=23, etc.

4, Scales Obtained by Algebraic Extension of Other Scales

The theory of polynomials in any field is so familiar a chapter of modern
algebra that not very much needs to be said here concerning polynomials in an
arbitrary scale S (polynomials with “coefficients” which are elements of .S).
We note only a few points of special interest. A polynomial in a scale S is con-
veniently distinguished as primary if the coefficient in the term of highest
“degree” is a regular element of S. Each element « of S is regarded as a poly-
nomial in .S, degrees being as follows: (1) when a0, it is a polynomial of
degree zero; and (2) when «=0, it is a polynomial of. degree® —1. Regular
and singular elements of .S, regarded as polynomials in S, are classed respec-
tively as primary and non-primary.

We note that the degree of the product of two polynomials in a scale is
equal to the sum of their degrees whenever at least one of the polynomials is
primary and the other is not the polynomial 0 (of degree —1). We record also
this fundamental division property:

Let S be any scale, finite or infinite. Let P denote any polynomial, and D
any primary polynomial, in S. There are uniquely determined two poly-
nomials Q and R in S, the latter of degree less than the degree of D, such
that P=QD+R.

It is convenient to designate R as the residue of P, modulo D; and to write:
R=Res (P, mod D). If the degree of P is less than that of D, we see at once
that® Res (P, mod D) =P.

Let us now select, as a modulus, any polynomial ¥, in S, which is primary
and of degree #=2. It is easy to define addition and multiplication over the
set U of all polynomials in S which have degrees less than #, in such manner
that U will be closed under these operations and will constitute a scale. We need
merely specify,” as the sum of two polynomials 4, B of U, the sum 4+B in S;

4 Similarly since 17(18) =20 we might expect to have 20/17 =18 and 20/18=17; but such is
not the case, for while 17(18) =20 implies 20/17 =18, it does not imply 20/18 =17. The element
18 is singular, and 20/18 is not defined.

5 Any other negative real number would serve equally well, for cur purposes, to mark the
degree of the polynomial 0. We wish merely to signalize that the “degree” of this polynomial is
to be regarded as less than that of any other polynomial in S.

6 In this case, Q is the polynomial 0, and R=P.

7 For the case in which the scale .S is a field, this procedure is very familiar. In this case, every
polynomial in S, except the polynomial 0, is primary. But to obtain a scale U which is a field,
we must employ, as modulus NV, a primary polynomial ¢rreducible in the field S.
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and as the product, the polynomial Res (4B, mod N), where 4 B is the product
in S. )

‘The scale U plainly contains a subset V which is a scale simply isomorphic
with the scale S. The scale V consists of those polynomials of U each of which
is represented by an element of S. In this sense, we may regard U as an extension
of S.

It is evident that when the scale .S is finite, consisting of 2 elements, the
scale U will likewise be finite, consisting of k” elements, where # is the degree
of the modulus N.

For the benefit of those readers who may not be experienced in manipula-
tions of the character here considered, we append two examples.

Example 1: Let S=S5(2), of which the elements? are 0 and 1. Let N=x2+«
+1. The elements of U are the four polynomials 0, 1, x, x+1 in S(2). Denoting
these elements by a, b, ¢, d respectively, we find that:

c+d=x+(x+1)=1=0b; ¢d = Res («2+ x, mod N) = 1 = b; etc.

Since, in this case, S is a field, and N is irreducible in .S, the scale U is a field.
Its operation tables in full are:

Addition Multiplication
a b ¢ d ¢ b ¢ d
ala b ¢ d ala a a a
bbb a d ¢ blae b ¢ d
clec d a b cla ¢ d b
dld ¢ b a dla d b ¢
The zero element is ¢, and the unit element is . Every element is its own

negative.®

For variety, let us select a modulus which is reducible in S(2), say N' =x?+1.
We are led to a scale U’, the operation tables of which, aside from the four
products, cc=b, cd =dc=d, dd =a, are exactly the same as those of U. The zero
and unit elements are again ¢ and b, respectively. There is a singular element
other than the zero, namely d, and U’ is therefore not a field.

Example 2: Let S=S5(6), of which the six elements are:

0;1=—-35;2=—-43=—-3;4=—-2;5=—1.

In this case, S is not a field; it contains the four singular elements, 0, 2, 3, 4.
For adequate illustration, we employ three moduli Ny=x2—1, Np=x2—2,
N;=x%?—x—1, leadini§ to the three scales Ui, Us, Us, respectively. The elements
of each of these scales are the thirty-six polynomials a+8x in .S(6), where a and
B denote any elements of S(6). Interesting light is thrown upon the structural

8 See Section 3, above. We shall take, as the elements of S(#), the # integers0,1,2, -+ ,n—1
themselves, adding and multiplying modulo #.

9 This is true in S(2), and in every scale obtained from S(2) by algebraic extension.
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relations of Ui, U,, Us by the following table, which exhibits the reciprocals of
all regular elements. For convenience of tabulation, a+Bx is compactly indi-
cated by of.

, TABLE

Element 00 10 20 30 40 50 O1 11 21 31 41 51

Recip. in U; 10 50 01

Recip. in U, 10 50 51 11

Recip. in Us 10 50 51 25 31 21 55 01

Element 02 12 22 32 42 52 03 13 23 33 43 53

Recip. in U; 32 23 43 '
- Recip. in U, 52 34 12 13 53

Recip. in Us 32 12 14 43 53 13 23

Element 04 14 24 34 44 54 05 15 25 35 45 55

Recip. in U, 34 '

Recip. in U, 54 32 14 55 15

Recip. in Us 52 54 34 15 05 11 45 35 41

The table is easily interpreted. Thus, for example, it shows at a glance that
the element 4-+2x is singular in each of the three scales Ui, U,, Us; and that
the element 54 2x is singular in Ui, but regular in U, and U; (with the reci-
procals 1+2x and 144x, respectively). The scales Ui, Us, Us, although of the
same order,!! are of very different structures; in fact, they contain respectively
seven, fourteen, and twenty-four regular elements.

From the standpoint of cryptanalysis, it is especially significant that finite
scales of the same order 7 and of widely divergent structures may be so easily
specified in this manner.!? Two finite fields of the same order are well known
to be algebraically identical. The present section will serve to emphasize that
there is an infinity of finite scales in which order does not completely determine
structure. -

5. Rational Manipulations in a Scale

It is very readily argued that, with only minor and obvious reservations, all
the rational operations and apparatus incidental to the solution, when unique
solutions exist, of systems of linear equations in a field are applicable in any
scale.

We are especially interested in noting the existence, in any scale, of a full
matric algebra of familiar type. The following comments on determinants and
matrices in an arbitrary (finite or infinite) scale will not be amiss.

10 The reader will hardly confuse the symbol a8, used only in the present example, with the
product af of elements of .5(6).

1 By the “order” of a finite scale, we understand the number of elements contained in the scale.

12 When 7 =k, with k and » positive integers each greater than 1.
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The determinant
Qi1 Q12 ° * Cin

An1 Qng * * * Qun

of order #, in which the a;; denote elements of the scale .S, has the same meaning
and properties as if .S were a field. We define L to be regular or singular accord-
ing as its “value” is a regular or a singular element of .S, where its “value” is
fixed by any one of the 2z equal expressions in .S,

n n
ZaiiAii: ZaiiAii; i, Jj=12--,m,
=1 =1
in which 4;; denotes the cofactor (algebraic complement) of a,; in L.

. Moreover, L is called the determinant of the square matrix

a11 Q12 Q1n

M= .- . ... = (i)

An1 Qu2 * * * Opn

of order # in S; and M is classed as regular or singular with L.

Upon occasion, we shall regard each element of the scale S as a matrix of
order n=1in .S. The set, SR{n}, of all square matrices of order # in S will be
called a range of matrices in S. When no misunderstanding can arise concerning
the scale S employed, the range of order #z in S will be denoted simply by R{x}.
It is clear that R{1} consists of all elements of the scale S regarded as matrices
of the first order in .S.

When #>1, a non-commutative algebra may be set up in the range R{n}
of the scale S. The procedure is a very familiar one,’® but may be briefly recalled
here:

(1) If A =(ai;) and B =(b;;) are matrices of the range R{n} in the scale S,
we define A =B when and only when a;;=0;; in S for every pair of indices ¢, j;
and we define addition and multiplication as follows, operations affecting
elements ay;, by, ¢i; of S being performed, of course, under the rules of S:

A+ B = (aij) + (bij) =C = (Cij), with ¢ =na¢,- + bij.
AB = (a;i)(bi)) = D = (dip), with dij = 2 ighy;.
g=1

13 The procedure is familiar for the case in which the scale S is a field. When S is not a field,
certain precautions must be taken, as will be indicated.
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From these definitions it is easy to conclude that, if 4, B, C are any matrices
of the range R{n},

A+B=B+A4, A+ B+C) =A+B)+C,
A(BC) = (4B)C, A(B+C) = AB + AC.

But, in general, AB#=BA.

(2) Let B be any element of the scale S. That matrix of the range R{n}
in S which has the scalar 8 in each place of the principal diagonal, and the
scalar 0 everywhere else, may be called the scalar mairix of 8, and may con-
veniently be denoted by ..

(3) If A is any matrix of R{n} in S, and B is any scalar in S, each of the
mixed products 84 and A is defined to be the matrix obtained upon multlplymg
every element of 4 by 8. Itis evident that

BA = B.A = AB, = 4p.

(4) The range R{n} in .S contains an unique zero mairix 0,, and an unique
unit matrix 1,, such that if A is any matrix of the range,

A+0,=A4, A0, = 0,4 =0, Al, = 1,4 = A.

These special matrices are merely the scalar matrices of the scalars 0 and 1.

(5) Corresponding to any matrix 4 of R{n} in S, there is exactly one matrix
B=—A such that A4+B=0,. The matrix, —A4, is the mixed product of the
matrix 4 and the scalar —1.

(6) Corresponding to any matrices 4 and B of the range R{xn} in S, there is
exactly one matrix C=B—A4 of the range such that A+ C=B. Clearly,
B—A=B+(—4).

(7) If the matrix 4 of R{n} in S is regular, there is exactly one matrix B
of the range such that AB=1,; and B also satisfies the equation B4 =1,. We
call B the reciprocal of A, and write B=A-1. If B=A"1, then also 4 =B~

(8) Let the matrix A of the range R{n} in .S be regular, and let M be any
matrix of the range. Then R{n} contains exactly one matrix H, and exactly
one matrix K, such that AH=M=KA. In fact, it is clear that H=A"1M
while K= MA™1.

(9) The reciprocal of the regular matrix 4 =(a;;) of R{n} in S is easily
written out; it is simply:

All Anl
p p Ay Am
1
A_l = = — ’
Aln Ann Aln tee Ann
P P
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where A4 ;; is the cofactor of a;; in the determinant of 4, and p is the value of that
determinant as worked out in the scale S. A singular matrix has no reciprocal.

(10) If we agree to interpret the mixed sum 8+4 =A4 48, where (8 is a scalar
in S and 4 is a matrix of the range R{n} in S, as the sum §,4+4 =448, of
matrices of R{n}, then in any expression like

m
¢+ quxq;

g=1

where ¢, a,, %, are matrices of R{n}, we may replace any scalar matrix by its
corresponding scalar.

(11) Exponential notations will be self-explanatory. We note, however,
that the symbol A—9, where 4 is a matrix of the range R{xn} in the scale S,
and ¢ is a positive integer or zero, is not defined unless A4 is regular. When A4
is regular, 4°=1,, A—9=(A4"1)1,

We are now prepared to discuss a novel class of ciphers associated with the
general linear transformation in the general range R{n} of the general scale S.
It will be necessary, of course, to employ only such transformations as have
unique inverses. Also it will be very desirable, for practical reasons, to make
easily available a large class of tnvolutory transformations.

6. Linear Transformations in the General Range

Consider the linear transformation T,:

Y1 = eu%® + G1a%2 + - - - + ayxr + ay,

Vr = ap%1 + Gpa%2 + - -+ e + gy,

where f is any positive integer, and the w;, ¥ a@ij, ¢; are matrices of any range
R{n} in any scale S. All operations required to effect this transformation are
to be performed in the range R{n}.

If »>1, the algebra of R{n} is non-commutative, as explained in Section 5.
The range R{1} coincides with the scale S itself, and the algebra of this range
with the (commutative) algebra of S. When #=1, it is clear that T'; is merely
a scalar transformation, the variables and the coefficients being elements of the
scale S.

In all that follows, we shall understand the range R{n} to include the under-
lying scale .S as the special range R{1}. The transformation T, converts a se-
quence of f matrices of the general range R{n} into another such sequence. But
when # =1, the matrices are of order 1, and are therefore merely scalars (ele-
ments of the scale ).

The rectangular array of f(f-+1) matrices,
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@11 Gy a1
Lo = ,
Qg1 ccc Gpr Of

will be called the schedule of T,, and will be designated as P, = [(as;), a;]. The
square array of f2 matrices M,= (a;;) will be called the basis of T,.

We denote by J the set of all transformations which can be obtained in
this way, for a fixed integer f, from the range R{n} in the scale S. Let T\, with
P.={(ai;), a:], and T4, with Py=[(b;;), b:], be two transformations of the set

J. Applying T, to a sequence of f matrices %1, %, - - - , %y of R{xn} in S, we ob-
tain the sequence i, ¥s, - * -, ¥y of matrices of the same range; applying T to
the sequence v1, s, + + -, 97, we obtain the sequence 21, 2, + + +, 2; compactly:

T.(x) =y, Ts(y)=2. The set J evidently contains an unique transformation
T,, with P,=[(ci;), c:], such that T.(x)=z. We say that T, is the product
Ty T, distinguishing this product from T4T%. It is quickly found that

s s
(1 Gii = Dbiglai, G = bi+ Dbiglq
¢=1 g=1
the operations required for calculation by these formulas being effected ac-
cording to the algebra of the range R{#n}.
It is readily shown that products of transformations in J are associative; if
T4, T, T, are any transformations in J, then To(Ts7T.) =(ToT5) T.

7. A Fundamental Lemma

Let T,, with the schedule P,= [(a:;), a:], be a transformation belonging to
the set J considered in Section 6. We fix our attention upon the basis M, = [as;]
of T,. If parentheses are removed from all the f?> matrices in the square array
[ai;], there results a square matrix G, in the scale S, of order g=fn. The matrix
G, will be called the frame matrix of T,. It is evident that G, belongs to the
range R{g} in the scale S. '

The following lemma is fundamental. It may be established by a straight-
forward argument which will be omitted here.

Lemma: Let T, Ts, T, be transformations in J; and let their frame matrices
be G,, Gp, G, respectively. Then G,=G.Gp if* T,=T,Ts. In other words,
the frame matrix of a product of transformations is the corresponding product of
the frame matrices of the transformations.

8. Regular Transformations in J.

We consider now the set H of all those transformations in the set J which
have regular frame matrices. We say that H is the set of regular transformations
in J.

1 Two transformations of the set J are “equal” when their schedules are exactly the same.
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It is clear that H contains the identical transformation, defined by the
schedule Q= [(as;), a;] in which a;;=1,(=7), a:;;=0,(i5%7), a;=0, (every index
7). Here, as heretofore, we employ the designations 0, and 1, respectively for
the zero and unit matrices of the range R{n} in S.

By an argument based upon the lemma, a significant theorem may now be
established:

Theorem 1: If T, is any transforimation in H, there exists, in H, an unique
transformation T such that the schedule of the product T.T% is Q; and Q is
likewise the schedule of the product T%7,. -

This theorem asserts that (1) any regular transformation T in J has an
unique inverse 7%, and (2) 7! is regular and has T for its inverse.

Proof: We suppose, first, that T, is any homogeneous transformation in H
(any transformation in H with the schedule [(ai;), a;] in which a;=0,, the zero
matrix of the range R{n}, for every index ¢). The frame matrix G, of T, is
regular, and has an unique reciprocal’® G,~! in the range R{g}. Hence that
homogeneous transformation T of J which has the frame matrix G,~* is regular,
and liesin H. By thelemma, T is manifestly an unique inverse to T, in the set H.

Now let T, be any transformation in H. Let y;=z2;+a; (¢=1,2,---, f),
these sums being formed, of course, in the range R{n} of matrices. Substituting
in the equations of T',, we obtain the equations of a transformation T, in H—a
transformation converting the sequence xi, %3, - - -, %; into the sequence
21, 2, * * +, 2. Since T, is of homogeneous type, it has an unique inverse I';7%
Replacing 2;, in the equations of T¢, by y;—as, and simplifying (by operations
in the range R{n}), we determine the equations of a transformation T'¢~! which
is the unique inverse of T, in H.

The argument is completed by the observation that if G,, Gs denote any
two matrices, of the range R{g}, such that G.Gy=1,, the unit matrix of the
range, then also G,G,=1, (See 7, Section 5).

We have thus a procedure for the actual determination of the equations
of the inverse transformation of which the existence is asserted, the required
operations being performed in the underlying scale S itself. As will be indicated
in examples below, it is frequently possible and convenient to find the inverse
transformation by elimination processes carried out ¢% the range R{n}, without
descending to the scale S.

The set H obviously constitutes a group of transformations, this group being
finite if the scale .S is finite.

9. Construction of Transformations of the Group H

The following modifications of a matrix of any range in any scale will be
called elementary:

(1) interchanging rows and columns; (2) adding, to every element of any
row (column), « times the corresponding element of another row (column),

15 See (9), Section 5.
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where « denotes any scalar (element of the underlying scale .S); (3) multiplying
every element of any row (column) by a regular scalar, and every element of
another row (column) by the reciprocal of that scalar; (4) interchanging two
rows (columns); (5) changing the sign of every element of a row (column).

The value of the determinant of the matrix is, of course, not changed by (1),
(2), or (3); and is changed only in sign by (4) or (5).

Now consider the special matrix ,I5 of.the range R{g} in the scale .S. This
matrix is so defined that it differs from the unit matrix 1, of the range only at the
intersection of the last (g-th) row and last column, where it has the scalar 3
instead of the scalar 1. Successions of elementary modifications may evidently
be applied to ;I in such manner as to alter its appearance completely, while
leaving the value, 8, of its determinant unchanged. Selecting, as 3, any regular
element of the scale .S, we have the means of constructing, quickly and easily,
a variety of regular matrices of the range R{g}. We may, of course, use any
one of these as the frame matrix of a transformation in the group H.

10. Involutory Transformations of the Group H

Let us call a transformation T, in J, tnvolutory if T? (that is, TT) is the
identical transformation, so that the schedule of 72 is Q. When T is involutory,
the determinant of the frame matrix of 72 evidently has the value 1 in the scale
S. Since the value of the determinant of a product of square matrices is ob-
viously the product of the values of their determinants, we conclude that the
value, 8, of the determinant of the matrix of T satisfies the equation §2=1in S.
It follows that & is a regular'® element of .S, and therefore that T is regular. Hence
any involutory transformation in J is regular, and lies in the group H.

The following theorem is evident:

Theorem 2: 1f T is an involutory transformation, and T" any transformation,
in H, then each of the transformations T'T:7T—! and T'T:T is involutory, and
lies'” in H.

For many cryptanalytic purposes, the following is an involutory trans-
formation of sufficient complexity:

f
2) Vi = X5 — Mr( _ZM%' + M),

i=1

where 2=1, 2, 3,--- , f; and A, Ny, -+ , Ny, 4 is any sequence of f4+1 matrices
selected quite arbitrarily from the range R{#} in the scale S; provided that

S
g = Z)\iz
=1

is a regular matrix, and 7 =201, the symbol 2 denoting the element 141 of the

8 The equation 82=1, in an arbitrary scale .S, does not imply §= +1. For example, in the
scale S(100), this equation has the four roots 1, 49, 51,99 (that is to say, +1and +49).
17 We have just noted that every involutory transformation in J lies in the group H.



1931] LINEAR TRANSFORMATION APPARATUS OF CRYPTOGRAPHY 147

scale S (so that 7 is the sum of two matrices, each equal to the reciprocal of
o). '

Operations required for the application of formula (2) are to be performed
in the range R{n} of matrices in the scale S. We easily verify that the formula
gives the equations of a transformation which is involutory. In fact, making
two applications of this transformation, we obtain:

2= 9i — MNr( 2 Niyi + )
= m — M 200w 4 1) — Nt 2N[ws = Nr( 0w + w)] + 1
= @i = N7 2Ny — N — Nr{ 2Ny — 2NAT( 2% + w) + p)
= 2 — N7 2 N&; — NTh — NiT D Nj&%; + NiTor Z)\qxq + NToTu — AT
= x; — 2NT 2N — 20T+ 2NT D Njx; + QT = .

In other words, if we denote the transformation (2) by 7', we have T'(x) =y and
T(y) =x, so that T2(x) =x.

The reductions made in the above verification of the involutory character
of the transformation (2) will be easily understood if the reader bears in mind
that 7o =2,, where 2, denotes the scalar matrix, in R{n}, of the scalar 2=141
of S, and may be replaced by the scalar 2. It should also be recalled that in a
mixed product of matrices and scalars we may, as explained in Section §,
shift the position of a scalar factor.

11. Notations and Procedure in Examples

Our illustrations will be based upon the scale S(26). We shall give examples
of ciphers based upon linear transformations in ranges of this scale. The
extension of the method to other scales will be obvious, and will not require
explicit treatment.

The following particular correspondence between S(26) and the letters of
the English alphabet will be adopted:

0123456789101112 13 14 15 16 17 18 19 20 21 22 23 24 25
mjdxahoucsz q ¢ t vy fw g i v s k p L v n b
or, in alphabetical arrangement:

a becd e f gh ij k Im no p g v s tu v wx 3y 3
42582111416 517 12022024621 102319127 18 153 13 9.

Any one of the 26! possible correspondences would serve equally well. But,
to be explicit, we shall employ the foregoing.

The symbol ,T; will designate a transformation T which is performed in
the range R{n} of the scale S(26), and is defined by f equations; such a transfor-
mation will convert a sequence of f matrices of R{n} into another such sequence.

18 Sections 13 and 14 present examples of the effective use of this formula.
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Let it be desired to encipher a message by means of a transformation of the
type »T7. Let the message be: 1, &, 3, « + - , the #; denoting simply the successive
letters of the message as it is written out. Replacing the ¢; by their correspond-
ing elements of S(26), we obtain the scalar sequence g1, gz, g3, 34,

We now partition the g-sequence into subsequences of & =#?%f elements each,
Writing qigs, * * * , Qks1 Qrr2s *  * » Qoki1 Qokie, © + - - 1f the last subsequence is
incomplete, we fill it out, in any prearranged manner, to k elements.

Each subsequence is enciphered in the same way. The encipherment is
accomplished by writing the subsequence, according to any convention, as a
sequence of f square matrices, each of order #, in the scale S(26), and subse-

quently transforming this sequence xi, %3, - - -+ , &y of matrices, through a trans-
formation of type T, into the sequence y1, s, - - - , ¥y of matrices. To decipher,
we apply to the sequence y1, ¥s, - * * , 97 the transformation inverse to that used

in encipherment.
The cipher subsequence actually transmitted is, of course, not the sequence
Y1, Y2 * + +, ¥7 of matrices in S(26), but the corresponding sequence of n*f
letters of the alphabet.
12. Example 1

The determinant of the matrix

o = O O
W O O

0
1
2
0

O W R

has the value!® 5 in S(26). Hence this matrix is regular; and the transformation
0 (S (S (D)

N1 1) N0 0/ \e 3 )
@ _(3 2) +(1 O) +(2 0)

N9 0/ N0 3/ \16)

of which it is the frame matrix, is regular. In this transformation, which we
shall denote by T4, the terms

( s ) ( Lo )
and
4 3 1 6
are, of course, chosen quite arbitrarily from the matrices of the range R{2} in

S(26).
We readily find that the inverse transformation, 771, has these equations:

19 See Section 9.
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3) (11 0> +(O —6) +(—5 7)
X1 =
TNs 1) \e 6 ) 1 16 )
' 15 —2 1 6 1m -1
4 Xo =
® ’ (-—7 o)yl+<o 1)y2+< 6 3>’

there being, throughout the work in S(26), two alternative expressions for each
element of the scale (21=—5, 19=—7, etc.).

The equations (3) and (4) may be found by a simple elimination process
in the range R{2}. The coefficient of %, in (2) is regular, and has the reciprocal??

o )=o1)-(oy)

Left-hand multiplication of each term of (2) by the product,

(o 0) (os)=(o %)

yields an equation which we subtract from (1), obtaining

o (o (a2 (G 3)

The coefficient of #; in (5) being regular, we easily solve for x; in terms of y; and
ya. Then (4) is deduced in obvious manner.

In this example, n=f=2. Given a message for encipherment, we first
arrange it in subsequences of #2f =8 letters each, filling out the last subsequence,
if necessary, by the adjunction of further letters according to the conventions
of the cipher. Let the message be, for instance, SUSPEND ATTACK, so that
the initial subsequence is SUSPENDA. Let it be agreed, as a cipher prearrange-

ment, to write:
S U) (EN)
(s P)  \D 4)

thus determining the two matrices in S(26),

19 7 > 11 24 )
X1 = , KXo =
' ( 19 21 ’ < 2 4 )
by means of the correspondence adopted in Section 11. Applying the trans-
formation T to the sequence xi, ¥, of matrices, we obtain the sequence y1, y;:

17 9 8 16 15 0 4
y1=<12 2>+< 0 0>+<4 3>=<16 s)’

17 11 1 24 20\ [ 409
”:(15 11>+< 6 12>+(1 6>_<22 3)’

2 See (9), Section 5.
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Returning to the alphabet, we replace the sequence y;, ¥; of matrices by

(¢ u) (2 %)

and the enciphered form of the initial message subsequenceis M AGHA Z L X.
In decipherment, we apply the transformation 77! to the sequence i, y» of
matrices, obtaining again the original matrix sequence x1, ¥z, and therewith also
the original message subsequence SUSPENDA. The same procedure is fol-
lowed with each message subsequence.

13. Example 2

If a cipher transformation can be made involutory without an appreciable
weakening of the resistance offered to cryptanalysis, it is desirable, for many
reasons, that this be done. Let us construct an involutory transformation of
type 2T%, employing formula (2), Section 10. Taking

)\_(1 0) (25 ; '—12)
T\ -1 ) 2_(1 3>’an”_(01’

we find that

a=)\12+)\22=(1 0)+<9 —1>=<10 —1)
0 1 5 14 5 15

is regular. Thus we have:

11 -1 22 =2
a‘1=( )and7'=20‘1=( )
5 16 10 6

It follows that:

emnen=(3 5 (2 2)(4)
eemo=(33) ()5 2)

Therefore, by formula (2) of Section 10, the following transformation, which
we shall call Ty, is involutory:

N (e
wr (5 D (1)

Its equations may be expressed:

Yo



1931] LINEAR TRANSFORMATION APPARATUS OF CRYPTOGRAPHY 151
0 ( 7—2) +<10 0) +(—4 10>
= x x
& —4 =7 )7 10 16/ 1210
\(2) (10 0> +<—5;—2) +<16—6)
= X X
7 \10 16 /)" 0 s5/)” 0 10
the use of negatives being avoidable if only positive signs are desired.

The equations of T5! are exactly the same as (1), (2) except that an inter-
change is made of x; and v, and of x; and ys.

From T, we easily obtain, by Theorem 2, Section 10, further involutory
transformations. Thus, denoting again by 73 the transformation given in
equations (1), (2) of Section 12, we know that each of the transformations
Ti'TeTy and T 777! is involutory. These products may be determined from

formulas (1) of Section 6, or by successive applications of the factor transforma-
tions. Following the latter method, we find that the product 77} is:

11 18 10 2 15 13

ZI=<17 13)x‘+<10 6>x2+<i6 13)’
17 16 21 8 14 6

Z2=<11 10>x‘+<10 3)x2+<21 8>;

and that the (involutory) product 77177} is:

38 2 4 8 24

(3) 3’1=<14 5>x1+<12 2>x2+(4 12):
6 8 3 18 6 14

) y2=(12 14>x1+(18 15>x2+<0 24)'

The cryptographic application of each of the two involutory transformations
developed in this section is essentially the same as that of the non-involutory T}
of the preceding section, and requires no separate discussion. The only differ-
ence—an important one, from the practical standpoint—is that the same
transformation, with interchange of x; and y;, of course, is here employed for
encipherment and decipherment.

14. Example 3

Let us determine an involutory transformation of type 575 If we set:

3 8 14 6 18 16 11 2 8
)\1=< 8 7 4), >\2=<24 20 12>, u=< 3 10 7>,
14 4 21 16 22 8 9 21 4

where

9 6 4 22 14 24 S 20 2
a=)\12+)\22=<6 25¢16>+<10 4 18>=<16 3 8)
4 16 3 24 20 12 2 10 15
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is regular, and p is arbitrary, we find, by (9) of Section 5,

1 17 6 24 17 6 24 7 4 16
ol = EI( 10 19 18 ) = 5< 10 19 18 > =< 24 17 12 >,
24 16 7 24 16 7 16 2 9

whence

14 8 6 16 14 20 4 22 2
T=20"1= < 22 8 24 >, T = < 4 6 2 >, AoT = < 16 10 8 >
6 4 18 20 20 12 2 24 14

By formula (2), Section 10, the transformation

16 14 20
Y1 = x1—< 4 6 2 )()\1%1+)\2x2+ﬁ),
20 20 12 '

4 22 2
Yo = X9 — ( 16 10 8 >(X1x1 + )\2902 + M)
2 24 14

is involutory. Its equations may be simplified to be

3 6 2 2 6 14 18 6 6
1) y1=<16 23 8>x1+< 8 24 4>x2+<24 20 22>
2 16 13 14 16 20 2 2 16

18 14 22 15 16 20 2 16 14
(2) y2=<20 4 10>x1+< 4 13 2)x2+< 8 12 4>'
22 20 24 20 8 11 14 8 20

Further involutory transformations of the type 3T may, of course, be
obtained from this by applying Theorem 2 of Section 10 and formulas (1) of
Section 6; or by applying Theorem 2 of Section 10 and the procedure outlined
at the close of Section 13.

In using the involutory transformation given by the equations (1) and (2)
above, we first partition our message into subsequences of eighteen letters
each, since n%f=18. We fill out the last subsequence, if it is incomplete, with
any prearranged letters.

Consider, for instance, the message: HOLD OUT. SUPPORTING AIR
SQUADRONS EN ROUTE. It contains two full subsequences. Let us treat
the first of these: HOLDOUTSUPPORTINGA. We suppose that the con-
vention adopted in the cipher is to write:
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H 0 L 5 6 22
x1=<D 0 U>=< 2 6 7)
-\NT § U 12 19 7
P
T

P - 0 21 21 6
x2=<R I>=<23 12 17)
N G 4 24 16 4

by means of the correspondence specified in Section 11. Substituting these
matrices for x; and x, in the equations (1), (2) of the present section, we obtain:

25 14 18 22 0 14 18 6 6 13 20 12
Y = <14 22 23> + (10 0 4> + <24 20 22> = <22 16 23>,
16 17 13 24 0 20 2 2 16 16 19 23

18 12 2 19 21 0O 2 16 14 13 23 12
Yo = <20 22 18]+ <15 12 19) -+ ( 8§ 12 4= <17 20 15>.
22 6 12 10 16 14 14 8 20 20 4 20

Hence the enciphered form of the subsequence is

Y K T Y R T
<L G R), <I K W>;
G S R K 4 K

or, as it would be transmitted® YK TLGRGSRYRTIK WK AK.
Substitution of the matrices y;, ¥. in the same equations (1) and (2) above
yields again the original matrices x;, x., the equations having first been
written, of course, with x; and y; interchanged (=1, 2).
Each message subsequence is enciphered and deciphered in the same
manner.
15. Concluding Notes

All the transformations discussed in the foregoing pages are obviously ap-
plicable in any range R{#} of any scale S, the special range R{1} coinciding with
S and yielding ordinary scalar transformations. Of interest in cryptography are
not only the scales S(z), and their various algebraic extensions, but also certain
non-modular and infinite scales. In this connection, we note especially the scale
S consisting of all positive and negative integers and zero in the field of rational
numbers; any regular transformation in a range of this scale will have a frame
matrix with determinant of value +1.

Plans have been completed for a novel type of computing machine capable
of effecting the simultaneous and speedy evaluation of any desired number of

2t When the entire message has been enciphered, it will normally be transmitted in the con-
ventional five-letter groups: YKTLG RGSRY «««+
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linear functions of any assigned sequences of elements in any scale of type
S(n), the linear functions having any arbitrarily selected scheme of coefficients.
The machine, although originally designed for other purposes, may be used to
apply very rapidly, without calculations of any sort, all transformations pro-
posed in this paper for which the underlying scale is an S(%), and even products
of such transformations with widely variable ciphers of different type. From
the point of view of cryptography, this circumstance lends exceptional interest
to the scales S(n).

Formula (2), Section 10, demands a sequence Ay, Ae, - - -, Ay of f square
matrices such that A2+A2+ - - - +N\2? is a regular matrix. A great variety of
sequences with this property can be determined very quickly, in any range of
any scale, and for any positive integer f, by means of an interesting formula
which will be the subject of special discussion elsewhere.

In any scale S, it is easy to set up an algebra for ranges of matrices whose
elements are in turn matrices, the elements of these latter being again matrices,
etc. But no important cryptographic advantages seem to arise from these fur-
ther complications. :

TWO FUNCTIONAL EQUATIONS WITH INTEGRAL ARGUMENTS
By PHILIP FRANKLIN, Massachusetts Institute of Technology

Professor E. T. Bell has recently indicated! that the general solution of the
functional equations
(1) f(x) ”l)f(x) n2) = f(x; "1 + 2 + 6))
(2) f(x) nl)f(x) n2) = f(x) Gnl"?))
in which the argument # is an integer =0, and the constant ¢ is an integer =0,
while x is a parameter, had a connection with the question of possible types of
arithmetic; and asked what were the general solutions of these equations. We
here obtain these general solutions, showing that the solution of the first in-

volves a single function of x, while that of the second involves an enumerable
number of such functions.

Theorem 1. The general solution of (1) is [F(x)]~*. We prove this by noting
that, in consequence of (1), we have:

@) flx,n— 1) flw, n+1) = flz, 20+ ) = [f(z, w)]* (n=1,2,...).
This shows that if f(x, 0) =0, f(x, ) =0 for all #; and also that if f(x,0)0, no

f(x, n) can vanish. In this latter case, we may rewrite (3) in the form:

fant1) S fa, 1)
= cee = = F(%).
® e Fma—1 T fme @

1 This Monthly, vol. 37 (1930), p. 484.
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