Algebra Lineal I.

Espacio Vectorial

Definición 1. Diremos que V es un **espacio vectorial** (o espacio lineal) sobre un campo \mathbb{F} si consiste de un conjunto con dos operaciones definidas, suma y producto por escalares, donde a cada par de elementos $x,y\in V$ le corresponde un único elemento $x+y\in V$, y para cada $x\in V$ y $\alpha\in \mathbb{F}$ le corresponde un único elemento $\alpha\cdot x\in V$, tales que complen todas y cada una de las siguientes condiciones

- (i) La suma es conmutativa. Para todo $x, y \in V$, x + y = y + x;
- (ii) La suma es asociativa. Para todo $x, y, z \in V$, x + (y + z) = (x + y) + z;
- (iii) Existe un elemento neutro, denotado por 0, tal que x + 0 = x, para todo $x \in V$;
- (iv) Por cada elemento $x \in V$, existe un elemento $y \in V$ tal que x + y = 0;
- (v) Para todos los elementos $x \in V$, se tiene $1 \cdot x = x$;
- (vi) Para todo $\alpha, \beta \in \mathbb{F}$ y cada $x \in V$, $(\alpha\beta) \cdot x = \alpha(\beta \cdot x)$
- (vii) Para todo $\alpha \in \mathbb{F}$ y cada par $x, y \in V$, $\alpha \cdot (x + y) = \alpha \cdot x + \alpha \cdot y$;
- (viii) Para cada par $\alpha, \beta \in \mathbb{F}$ y todo $x \in V$, $(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$.

Nota 1. Los elementos de V se llaman vectores, y llamaremos escalares a los elementos del campo \mathbb{F} donde se encuentra definido V.

Ejemplo 1. Sea $V = \mathbb{F}^n$ el conjunto de todas las n-adas de elementos de \mathbb{R} . Sean $u, v \in V$ tales que $u = (u_1, u_2, \dots, u_n), v = (v_1, v_2, \dots, v_n)$ y $c \in \mathbb{F}$. Se definen las operaciones (+) y (\cdot) como

$$u + v = (u_1 + v_1, \dots, u_n + v_n), \quad c \cdot u = (c u_1, \dots, c u_n)$$

Ejemplo 2. Como consecuencia del ejemplo anterior, $V = \mathbb{R}^3$, es un espacio vectorial. Sean $u, v \in \mathbb{R}^3$ tales que $u = (u_1, u_2, u_3), v = (v_1, v_2, v_3)$ y $c \in \mathbb{R}$. Entonces

$$u + v = \begin{pmatrix} u_1 + v_1 \\ u_2 + v_2 \\ u_3 + v_3 \end{pmatrix}, \quad c \cdot u = \begin{pmatrix} c u_1 \\ c u_3 \\ c u_3 \end{pmatrix}$$

Ejemplo 3. De manera similar, $V = \mathbb{C}^2$, es un espacio vectorial. Sean $u, v \in \mathbb{C}^2$ tales que $z = (z_1, z_2)$, $w = (w_1, w_2)$ $y \in \mathbb{C}$. Entonces

$$z + w = (z_1 + w_1, z_2 + w_2), \quad c \cdot z = (c z_1, z_2)$$

Ejemplo 4. Considera $V = M_{m \times n}(\mathbb{F})$, es un espacio vectorial con las operaciones de suma de matrices y producto por escalares. Si $A, B \in M_{m \times n}(\mathbb{F})$ y $\kappa \in \mathbb{F}$, entonces

$$(A+B)_{ij} = (a_{ij}) + (b_{ij}), \quad (cA)_{ij} = c(A_{ij})$$

para $1 \le i \le m$ y $1 \le j \le n$.

Algebra Lineal I.

Ejemplo 5. Sea $V = \mathbb{P}_n(x)$ el anillo de polinomios de grado n, es un espacio vectorial con la suma de polinomios y producto por escalares. Si $p(x), q(x) \in V$, tales que

$$p(x) = a_0 + a_1 x + \dots + a_n x^n, \quad q(x) = b_0 + bx + \dots + b_n x^n$$

las operaciones de suma y producto por escalares están definidas mediante

$$(p+q)(x) = (a_0 + b_0) + (a_1 + b_1)x + \dots + (a_n + b_n)x^n$$

$$(\alpha \cdot p)(x) = (\alpha a_0) + (\alpha a_1)x + \dots + (\alpha a_n)x^n$$

Nota 2. El espacio de polinomios de grado n se emplea para el análisis de datos: método de mínimos cuadrados, regresión lineal, interpolación, series de Fourier, etc.

Ejemplo 6. Sea S un conjunto no vacío g F cualquier campo, consideremos el conjunto de todas las funciones definidas de S a F, lo denotaremos por $\mathfrak{F}(S,F)$. Si $f,g\in\mathfrak{F}(S,F)$, entonces este conjunto es un espacio vectorial con las operaciones

$$(f+g)(s) = f(s) + g(s), \quad (\kappa f)(s) = \kappa [f(s)], \text{ con } \kappa \in F$$

para cada $s \in S$. Cabe menciona que dos funciones son iguales si f(s) = g(s) para toda $s \in S$.

Ejemplo 7. Sea F un campo. Una sucesión en F es una función σ definida en \mathbb{N} y evaluada en F, es decir $\sigma : \mathbb{N} \to F$, denotaremos por $\{a_n\}$ a una sucesión σ donde a cada n, $\sigma(n) = a_n$. Sea V el conjunto de todas las sucesiones $\{a_n\}$ en F que tienen un número finito de términos a_n distintos de cero. Si $\{a_n\}, \{b_n\} \in V$ y $\alpha \in F$, definimos

$${a_n} + {b_n} = {a_n + b_n}, \quad \alpha {a_n} = {\alpha a_n}$$

 $con\ estas\ operaciones\ V\ es\ un\ espacio\ vectorial.$

Subspacio Vectorial

Definición 2. Sea V un espacio vectorial, y sea W un subconjunto de V. Diremos que W es un subespacio vectorial de V si satisface las siguientes condiciones

- (i) $Si\ u, v \in W$, entonnees $u + v \in W$;
- (ii) $Si \ u \in W \ y \ \alpha \ es \ un \ escalar, \ entonces \ c \ u \in W;$
- (iii) $0 \in V$ entonces $0 \in W$.